* * * * *12AX7 * * Plate * | Grid * | | Cathode * | | | .SUBCKT 12AX7 A G K BGG GG 0 V=V(G,K)+0.59836683 BM1 M1 0 V=(0.0017172334*(URAMP(V(A,K))+1e-10))**-0.2685074 BM2 M2 0 V=(0.84817287*(URAMP(V(GG)+URAMP(V(A,K))/88.413802)+1e-10))**1.7685074 BP P 0 V=0.001130216*(URAMP(V(GG)+URAMP(V(A,K))/104.24031)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00071211506*V(M1)*V(M2) BIG IG 0 V=0.000565108*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00058141055*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 1.7p CGK G K 1.6p CAK A K 0.5p .ENDS * * * * * * *12AT7 * Plate * | Grid * | | Cathode * | | | .SUBCKT 12AT7 A G K BGG GG 0 V=V(G,K)+0.67585931 BM1 M1 0 V=(0.015420581*(URAMP(V(A,K))+1e-10))**-1.768756 BM2 M2 0 V=(0.45889017*(URAMP(V(GG)+URAMP(V(A,K))/35.090106)+1e-10))**3.268756 BP P 0 V=0.0031809222*(URAMP(V(GG)+URAMP(V(A,K))/76.46733)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0042575005*V(M1)*V(M2) BIG IG 0 V=0.0015904611*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0016530623*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 1.5p CGK G K 2.2p CAK A K 0.5p .ENDS * * * * * * *12AU7 * Plate * | Grid * | | Cathode * | | | .SUBCKT 12AU7 A G K BGG GG 0 V=V(G,K)+0.89005722 BM1 M1 0 V=(0.028826571*(URAMP(V(A,K))+1e-10))**-0.90897681 BM2 M2 0 V=(0.622671*(URAMP(V(GG)+URAMP(V(A,K))/13.089625)+1e-10))**2.4089768 BP P 0 V=0.00087237591*(URAMP(V(GG)+URAMP(V(A,K))/21.021735)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00055330711*V(M1)*V(M2) BIG IG 0 V=0.00043618795*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00049917061*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 1.5p CGK G K 1.6p CAK A K 0.4p .ENDS * * * * * *ECC88 * Plate * | Grid * | | Cathode * | | | .SUBCKT ECC88 A G K BGG GG 0 V=V(G,K)+0.34001426 BM1 M1 0 V=(0.009343174*(URAMP(V(A,K))+1e-10))**-0.49661195 BM2 M2 0 V=(0.75127268*(URAMP(V(GG)+URAMP(V(A,K))/26.621288)+1e-10))**1.9966119 BP P 0 V=0.007130155*(URAMP(V(GG)+URAMP(V(A,K))/35.434921)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0041180199*V(M1)*V(M2) BIG IG 0 V=0.0035650775*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0038690245*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 1.4p CGK G K 3.3p CAK A K 1.8p .ENDS * * * * * *6SL7 * Plate * | Grid * | | Cathode * | | | .SUBCKT 6SL7 A G K BGG GG 0 V=V(G,K)+0.34892993 BM1 M1 0 V=(0.00093777395*(URAMP(V(A,K))+1e-10))**-0.098159943 BM2 M2 0 V=(0.9385794*(URAMP(V(GG)+URAMP(V(A,K))/65.496168)+1e-10))**1.5981599 BP P 0 V=0.00080166786*(URAMP(V(GG)+URAMP(V(A,K))/69.782235)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00061341966*V(M1)*V(M2) BIG IG 0 V=0.00040083393*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00041812772*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 2.8p CGK G K 3.4p CAK A K 3.8p .ENDS * * * * * *6SN7 * Plate * | Grid * | | Cathode * | | | .SUBCKT 6SN7 A G K BGG GG 0 V=V(G,K)+0.54900933 BM1 M1 0 V=(0.020494606*(URAMP(V(A,K))+1e-10))**-0.76277031 BM2 M2 0 V=(0.66290422*(URAMP(V(GG)+URAMP(V(A,K))/16.448024)+1e-10))**2.2627703 BP P 0 V=0.0012465111*(URAMP(V(GG)+URAMP(V(A,K))/24.812067)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00074417047*V(M1)*V(M2) BIG IG 0 V=0.0003834058*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0006816103*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 4p CGK G K 3p CAK A K 1.2p .ENDS * * * * * *6SJ7 * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6SJ7 A G2 G1 K BGG GG 0 V=V(G1,K)+0.40161932 BM1 M1 0 V=(0.02462593*(URAMP(V(G2,K))+1e-10))**-0.84287662 BM2 M2 0 V=(0.64023858*(URAMP(V(GG)+URAMP(V(G2,K))/14.609049)))**2.3428766 BP P 0 V=0.0011655656*(URAMP(V(GG)+URAMP(V(G2,K))/22.818133))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00071703729*V(M1)*V(M2) BIG IG 0 V=0.00068041382*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.78466568*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.21533432) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+12950)/(URAMP(V(G2,K))+12950) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.00044226898*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.00044226898*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.005p CGK G1 K 3.6p C12 G1 G2 2.4p CAK A K 7p .ENDS * * * * * * * * * * * *6F6 * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6F6 A G2 G1 K BGG GG 0 V=V(G1,K)+0.99999999 BM1 M1 0 V=(0.043621772*(URAMP(V(G2,K))+1e-10))**-0.51782633 BM2 M2 0 V=(0.74337419*(URAMP(V(GG)+URAMP(V(G2,K))/5.8829755)))**2.0178263 BP P 0 V=0.00053269576*(URAMP(V(GG)+URAMP(V(G2,K))/7.9138819))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00030710831*V(M1)*V(M2) BIG IG 0 V=0.00019764236*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.84588664*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.15411336) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+3830)/(URAMP(V(G2,K))+3830) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.00037552047*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.00037552047*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.7p CGK G1 K 5p C12 G1 G2 3.3p CAK A K 6.9p .ENDS * * * * * *6V6 * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6V6 A G2 G1 K BGG GG 0 V=V(G1,K)+0.99999998 BM1 M1 0 V=(0.048335289*(URAMP(V(G2,K))+1e-10))**-0.77023894 BM2 M2 0 V=(0.6607234*(URAMP(V(GG)+URAMP(V(G2,K))/7.0192317)))**2.2702389 BP P 0 V=0.0010053341*(URAMP(V(GG)+URAMP(V(G2,K))/10.623555))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00060166202*V(M1)*V(M2) BIG IG 0 V=0.00051429562*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.916000233*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.083999767) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+3125)/(URAMP(V(G2,K))+3125) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.00061491868*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.00061491868*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.7p CGK G1 K 5p C12 G1 G2 3.3p CAK A K 6.9p .ENDS * * * * * *EL34 * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT EL34 A G2 G1 K BGG GG 0 V=V(G1,K)+0.29360503 BM1 M1 0 V=(0.040003405*(URAMP(V(G2,K))+1e-10))**-0.73308055 BM2 M2 0 V=(0.67171782*(URAMP(V(GG)+URAMP(V(G2,K))/8.2063559)))**2.2330806 BP P 0 V=0.0033402929*(URAMP(V(GG)+URAMP(V(G2,K))/12.216969))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0019762451*V(M1)*V(M2) BIG IG 0 V=0.0016701465*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.87617414*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.12382586) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+1250)/(URAMP(V(G2,K))+1250) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.0020885491*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.0020885491*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 1.1p CGK G1 K 9.1p C12 G1 G2 6.1p CAK A K 8.4p .ENDS * * * * * * *6550A * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6550A A G2 G1 K BGG GG 0 V=V(G1,K)+0.1919366 BM1 M1 0 V=(0.064698506*(URAMP(V(G2,K))+1e-10))**-0.90961742 BM2 M2 0 V=(0.62250546*(URAMP(V(GG)+URAMP(V(G2,K))/5.8346717)))**2.4096174 BP P 0 V=0.0027588474*(URAMP(V(GG)+URAMP(V(G2,K))/9.3728844))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0017503674*V(M1)*V(M2) BIG IG 0 V=0.0013794237*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.928052868*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.071947132) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+2900)/(URAMP(V(G2,K))+2900) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.0018325138*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.0018325138*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.8p CGK G1 K 8.6p C12 G1 G2 5.7p CAK A K 9.2p .ENDS * * * * * * * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6L6 A G2 G1 K BGG GG 0 V=V(G1,K)+0.91804059 BM1 M1 0 V=(0.10751078*(URAMP(V(G2,K))+1e-10))**-1.743575 BM2 M2 0 V=(0.4624527*(URAMP(V(GG)+URAMP(V(G2,K))/4.9999386)))**3.243575 BP P 0 V=0.0016883841*(URAMP(V(GG)+URAMP(V(G2,K))/10.811784))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.0021948901*V(M1)*V(M2) BIG IG 0 V=0.0022135943*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.942171668*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.057828332) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+2180)/(URAMP(V(G2,K))+2180) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.00056920996*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.00056920996*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.6p CGK G1 K 5.7p C12 G1 G2 3.8p CAK A K 5.9p .ENDS * * * * * * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6K7 A G2 G1 K BGG GG 0 V=V(G1,K)+-1 BM1 M1 0 V=(2.3738651*(URAMP(V(G2,K))+1e-10))**-38.694622 BM2 M2 0 V=(0.037318425*(URAMP(V(GG)+URAMP(V(G2,K))/0.40553339)))**40.194622 BP P 0 V=0.00060436625*(URAMP(V(GG)+URAMP(V(G2,K))/10.866841))**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*2.5180035e+51*V(M1)*V(M2) BIG IG 0 V=0.00030218313*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.800634*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.199366) BIK3 IK3 0 V=V(IK2)*(URAMP(V(A,K))+5600)/(URAMP(V(G2,K))+5600) BIK4 IK4 0 V=V(IK3)-URAMP(V(IK3)-(0.00038749733*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5)) BIP IP 0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.00038749733*URAMP(V(A,K))**1.5))) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=URAMP(V(IK4,IP)) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.005p CGK G1 K 4.2p C12 G1 G2 2.8p CAK A K 12p .ENDS * * * * * * Plate * | Grid * | | Cathode * | | | .SUBCKT 6386 A G K BGG GG 0 V=V(G,K)+1 BM1 M1 0 V=(1.0416187*(URAMP(V(A,K))+1e-10))**-30.188951 BM2 M2 0 V=(0.04733511*(URAMP(V(GG)+URAMP(V(A,K))/0.91460038)+1e-10))**31.688951 BP P 0 V=0.0012421239*(URAMP(V(GG)+URAMP(V(A,K))/19.321818)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*2.839322e+36*V(M1)*V(M2) BIG IG 0 V=0.00062106195*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00071872818*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 1.2p CGK G K 2p CAK A K 1.1p .ENDS * * * * * * Plate * | Screen Grid * | | Control Grid * | | | Cathode * | | | | .SUBCKT 6267_AN A G2 G1 K BGG GG 0 V=V(G1,K)+0.59868749 BM1 M1 0 V=(0.010782364*(LIMIT(V(G2,K),0,1e16)+1e-10))**-0.70765893 BM2 M2 0 V=(0.67945278*(LIMIT((V(GG)+LIMIT(V(G2,K),0,1e16)/29.728844),0,1e16)))**2.2076589 BP P 0 V=0.0013378994*(LIMIT((V(GG)+LIMIT(V(G2,K),0,1e16)/43.754099),0,1e16))**1.5 BIK IK 0 V=STP(V(GG))*V(P)+(1-STP(V(GG)))*0.00078620809*V(M1)*V(M2) BIG IG 0 V=0.00066894969*LIMIT(V(G1,K),0,1e16)**1.5*(LIMIT(V(G1,K),0,1e16)/(LIMIT(V(A,K),0,1e16)+LIMIT(V(G1,K),0,1e16))*1.2+0.4) BIK2 IK2 0 V=V(IK,IG)*(1-0.4*(EXP(-LIMIT(V(A,K),0,1e16)/LIMIT(V(G2,K),0,1e16)*15)-EXP(-15))) BIG2T IG2T 0 V=V(IK2)*(0.83966688*(1-LIMIT(V(A,K),0,1e16)/(LIMIT(V(A,K),0,1e16)+10))**1.5+0.16033312) BIK3 IK3 0 V=V(IK2)*(LIMIT(V(A,K),0,1e16)+7510)/(LIMIT(V(G2,K),0,1e16)+7510) BIK4 IK4 0 V=V(IK3)-LIMIT(V(IK3)-(0.00071507731*(LIMIT(V(A,K),0,1e16)+LIMIT(LIMIT(V(G2,K),0,1e16)-LIMIT(V(A,K),0,1e16),0,1e16))**1.5),0,1e16) BIP IP 0 V=LIMIT(V(IK4,IG2T)-LIMIT(V(IK4,IG2T)-(0.00071507731*LIMIT(V(A,K),0,1e16)**1.5),0,1e16),0,1e16) BIAK A K I=V(IP)+1e-10*V(A,K) BIG2 G2 K I=LIMIT(V(IK4,IP),0,1e16) BIGK G1 K I=V(IG) * CAPS CGA G1 A 0.05p CGK G1 K 2.3p C12 G1 G2 1.5p CAK A K 5.3p .ENDS * * * * * * * * * * * * * * * Plate * | Grid * | | Cathode * | | | .SUBCKT 6K7T A G K BGG GG 0 V=V(G,K)+-1 BM1 M1 0 V=(2.3738651*(URAMP(V(A,K))+1e-10))**-38.694622 BM2 M2 0 V=(0.037318425*(URAMP(V(GG)+URAMP(V(A,K))/0.40553339)+1e-10))**40.194622 BP P 0 V=0.00060436625*(URAMP(V(GG)+URAMP(V(A,K))/10.866841)+1e-10)**1.5 BIK IK 0 V=U(V(GG))*V(P)+(1-U(V(GG)))*2.5180035e+51*V(M1)*V(M2) BIG IG 0 V=0.00030218313*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4) BIAK A K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00038749733*URAMP(V(A,K))**1.5)))+1e-10*V(A,K) BIGK G K I=V(IG) * CAPS CGA G A 2.8p CGK G K 4.2p CAK A K 12p .ENDS * * ============================================================== * 6N23P LTSpice model * Modified Koren model (8 parameters): mean fit error 0.182649mA * Traced by Wayne Clay on 08/22/2018 using Curve Captor v0.9.1 * and Engauge Digitizer from Soviet data sheet * ============================================================== .subckt 6N23P P G K Bp P K I= + (0.09199263401m)*uramp(V(P,K)*ln(1.0+(-0.04545642112)+exp((4.06290859)+ + (4.06290859)*((30.26769611)+(-1093.389027m)*V(G,K))*V(G,K)/sqrt((29.02430003)**2+ + (V(P,K)-(11.49369847))**2)))/(4.06290859))**(1.290098711) Cgp G P 2.3p ; 0.7p added (1.6p) Cgk G K 4.3p ; 0.7p added (3.6p) Cpk P K 2.3p ; 0.2p added (2.1p) Rpk P K 1.0G ; to avoid floating nodes in mu-follower d3 G K dx1 .model dx1 d(is=1n rs=2k cjo=1pf N=1.5 tt=1n) .ends 6N23P *6N1P LTspice model based on the generic triode model from Adrian Immler, version i4 *A version log is at the end of this file *100h BurnIn of 5 Voskhod factory tubes, sample selection and measurements done in Jan. 2021 *Params fitted to the measured values by Adrian Immler, Jan. 2021 *The high fit quality is presented at adrianimmler.simplesite.com *History's best of tube decribing art (plus some new ideas) is merged to this new approach. *@ neg. Vg, Ia accuracy is similar to Koren models. *@ small neg. Vg, the "Anlauf" current is considered. *@ pos. Vg, Ig and Ia accuracy is on a unrivaled level. *This offers new simulation possibilities like bias point setting with MOhm grid resistor, *Audion radio circuits, low voltage amps, guitar distortion stages or pulsed stages. * anode (plate) * | grid * | | cathode * | | | .subckt 6N1P.i4 A G K + params: *Parameters for the space charge current @ Vg <= 0 + mu = 42.5 ;Determines the voltage gain @ constant Ia + rad = 6k1 ;Differential anode resistance, set @ Iad and Vg=0V + Vct = -0.5 ;Offsets the Ia-traces on the Va axis. Electrode material's contact potential + kp = 295 ;Mimics the island effect + xs = 1.5 ;Determines the curve of the Ia traces. Typically between 1.2 and 1.8 * *Parameters for assigning the space charge current to Ia and Ig @ Vg > 0 + kB = 0.6 ;Describes how fast Ia drops to zero when Va approaches zero. + radl = 300 ;Differential resistance for the Ia emission limit @ very small Va and Vg > 0 + tsh = 20 ;Ia transmission sharpness from 1th to 2nd Ia area. Keep between 3 and 20. Start with 20. + xl = 1.2 ;Exponent for the emission limit * *Parameters of the grid-cathode vacuum diode + kvdg = 60 ;virtual vacuumdiode. Causes an Ia reduction @ Ig > 0. + kg = 3k55 ;Inverse scaling factor for the Va independent part of Ig (caution - interacts with xg!) + Vctg = 0.45 ;Offsets the log Ig-traces on the Vg axis. Electrode material's contact potential + xg = 1.9 ;Determines the curve of the Ig slope versus (positive) Vg and Va >> 0 + VT = 0.092;Log(Ig) slope @ Vg<0. VT=k/q*Tk (cathodes absolute temp, typically 1150K) + kVT=0 ;Va dependant koeff. of VT + Vft2 = 0 gft2 = 0 ;finetunes the gridcurrent @ low Va and Vg near zero * *Parameters for the caps + cag = 2p7 ;From datasheet + cak = 1p7 ;From datasheet + cgk = 3p1 ;From datasheet * *special purpose parameters + os = 1 ;Overall scaling factor, if a user wishes to simulate manufacturing tolerances * *Calculated parameters + Iad = {100/rad} ;Ia where the anode a.c. resistance is set according to rad. + ks = {pow(mu/(rad*xs*Iad**(1-1/xs)),-xs)} ;Reduces the unwished xs influence to the Ia slope + ksnom = {pow(mu/(rad*1.5*Iad**(1-1/1.5)),-1.5)} ;Sub-equation for calculating Vg0 + Vg0 = {Vct + (Iad*ks)**(1/xs) - (Iad*ksnom)**(2/3)} ;Reduces the xs influence to Vct. + kl = {pow(1/(radl*xl*Ild**(1-1/xl)),-xl)} ;Reduces the xl influence to the Ia slope @ small Va + Ild = {sqrt(radl)*1m} ;Current where the Il a.c. resistance is set according to radl. * *Space charge current model Bggi GGi 0 V=v(Gi,K)+Vg0 ;Effective internal grid voltage. Bahc Ahc 0 V=uramp(v(A,K)) ;Anode voltage, hard cut to zero @ neg. value Bst St 0 V=uramp(max(v(GGi)+v(A,K)/(mu), v(A,K)/kp*ln(1+exp(kp*(1/mu+v(GGi)/(1+v(Ahc)))))));Steering volt. Bs Ai K I=os/ks*pow(v(St),xs) ;Langmuir-Childs law for the space charge current Is * *Anode current limit @ small Va .func smin(z,y,k) {pow(pow(z+1f, -k)+pow(y+1f, -k), -1/k)} ;Min-function with smooth trans. Ra A Ai 1 Bgl Gi A I=min(i(Ra)-smin(1/kl*pow(v(Ahc),xl),i(Ra),tsh),i(Bgvd)*exp(4*v(G,K))) ;Ia emission limit * *Grid model Bvdg G Gi I=1/kvdg*pwrs(v(G,Gi),1.5) ;Reduces the internal effective grid voltage when Ig rises Rgip G Gi 1G ;avoids some warnings Cvdg G Gi 0p1;this small cap improves convergence .func fVT() {VT*exp(-kVT*sqrt(v(A,K)))} .func Ivd(Vvd, kvd, xvd, VTvd) {if(Vvd < 3, 1/kvd*pow(VTvd*xvd*ln(1+exp(Vvd/VTvd/xvd)),xvd), 1/kvd*pow(Vvd, xvd))} ;Vacuum diode function Bgvd Gi K I=Ivd(v(G,K) + Vctg, kg/os, xg, fVT()) .func ft2() {gft2*(1-tanh(3*(v(G,K)+Vft2)))} ;Finetuning-func. improves ig-fit @ Vg near -0.5V, low Va. Bgr Gi Ai I=ivd(v(GGi),ks/os, xs, 0.8*VT)/(1+ft2()+kB*v(Ahc));Is reflection to grid when Va approaches zero Bs0 Ai K I=ivd(v(GGi),ks/os, xs, 0.8*VT)/(1+ft2()) - os/ks*pow(v(GGi),xs) ;Compensates neg Ia @ small Va and Vg near zero * *Caps C1 A G {cag} C2 A K {cak} C3 G K {cgk} .ends